USN-5774-1: Linux kernel (Azure) vulnerabilities
Jann Horn discovered that the Linux kernel did not properly track memory
allocations for anonymous VMA mappings in some situations, leading to
potential data structure reuse. A local attacker could use this to cause a
denial of service (system crash) or possibly execute arbitrary code.
(CVE-2022-42703)
It was discovered that a race condition existed in the instruction emulator
of the Linux kernel on Arm 64-bit systems. A local attacker could use this
to cause a denial of service (system crash). (CVE-2022-20422)
It was discovered that the KVM implementation in the Linux kernel did not
properly handle virtual CPUs without APICs in certain situations. A local
attacker could possibly use this to cause a denial of service (host system
crash). (CVE-2022-2153)
Hao Sun and Jiacheng Xu discovered that the NILFS file system
implementation in the Linux kernel contained a use-after-free
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2022-2978)
Abhishek Shah discovered a race condition in the PF_KEYv2 implementation in
the Linux kernel. A local attacker could use this to cause a denial of
service (system crash) or possibly expose sensitive information (kernel
memory). (CVE-2022-3028)
It was discovered that the video4linux driver for Empia based TV cards in
the Linux kernel did not properly perform reference counting in some
situations, leading to a use-after-free vulnerability. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2022-3239)
It was discovered that a memory leak existed in the IPv6 implementation of
the Linux kernel. A local attacker could use this to cause a denial of
service (memory exhaustion). (CVE-2022-3524)
It was discovered that a race condition existed in the Bluetooth subsystem
in the Linux kernel, leading to a use-after-free vulnerability. A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2022-3564)
It was discovered that the ISDN implementation of the Linux kernel
contained a use-after-free vulnerability. A privileged user could use this
to cause a denial of service (system crash) or possibly execute arbitrary
code. (CVE-2022-3565)
It was discovered that the TCP implementation in the Linux kernel contained
a data race condition. An attacker could possibly use this to cause
undesired behaviors. (CVE-2022-3566)
It was discovered that the IPv6 implementation in the Linux kernel
contained a data race condition. An attacker could possibly use this to
cause undesired behaviors. (CVE-2022-3567)
It was discovered that the Realtek RTL8152 USB Ethernet adapter driver in
the Linux kernel did not properly handle certain error conditions. A local
attacker with physical access could plug in a specially crafted USB device
to cause a denial of service (memory exhaustion). (CVE-2022-3594)
It was discovered that a null pointer dereference existed in the NILFS2
file system implementation in the Linux kernel. A local attacker could use
this to cause a denial of service (system crash). (CVE-2022-3621)
It was discovered that the IDT 77252 ATM PCI device driver in the Linux
kernel did not properly remove any pending timers during device exit,
resulting in a use-after-free vulnerability. A local attacker could
possibly use this to cause a denial of service (system crash) or execute
arbitrary code. (CVE-2022-3635)
It was discovered that the Netlink Transformation (XFRM) subsystem in the
Linux kernel contained a reference counting error. A local attacker could
use this to cause a denial of service (system crash). (CVE-2022-36879)
Xingyuan Mo and Gengjia Chen discovered that the Promise SuperTrak EX
storage controller driver in the Linux kernel did not properly handle
certain structures. A local attacker could potentially use this to expose
sensitive information (kernel memory). (CVE-2022-40768)
Source: USN-5774-1: Linux kernel (Azure) vulnerabilities
Leave a Reply