USN-6030-1: Linux kernel (Qualcomm Snapdragon) vulnerabilities
It was discovered that the Traffic-Control Index (TCINDEX) implementation
in the Linux kernel contained a use-after-free vulnerability. A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2023-1281)
It was discovered that the System V IPC implementation in the Linux kernel
did not properly handle large shared memory counts. A local attacker could
use this to cause a denial of service (memory exhaustion). (CVE-2021-3669)
It was discovered that a use-after-free vulnerability existed in the SGI
GRU driver in the Linux kernel. A local attacker could possibly use this to
cause a denial of service (system crash) or possibly execute arbitrary
code. (CVE-2022-3424)
Ziming Zhang discovered that the VMware Virtual GPU DRM driver in the Linux
kernel contained an out-of-bounds write vulnerability. A local attacker
could use this to cause a denial of service (system crash).
(CVE-2022-36280)
It was discovered that the infrared transceiver USB driver did not properly
handle USB control messages. A local attacker with physical access could
plug in a specially crafted USB device to cause a denial of service (memory
exhaustion). (CVE-2022-3903)
Hyunwoo Kim discovered that the DVB Core driver in the Linux kernel did not
properly perform reference counting in some situations, leading to a use-
after-free vulnerability. A local attacker could use this to cause a denial
of service (system crash) or possibly execute arbitrary code.
(CVE-2022-41218)
It was discovered that the network queuing discipline implementation in the
Linux kernel contained a null pointer dereference in some situations. A
local attacker could use this to cause a denial of service (system crash).
(CVE-2022-47929)
José Oliveira and Rodrigo Branco discovered that the prctl syscall
implementation in the Linux kernel did not properly protect against
indirect branch prediction attacks in some situations. A local attacker
could possibly use this to expose sensitive information. (CVE-2023-0045)
It was discovered that a use-after-free vulnerability existed in the
Advanced Linux Sound Architecture (ALSA) subsystem. A local attacker could
use this to cause a denial of service (system crash). (CVE-2023-0266)
Kyle Zeng discovered that the IPv6 implementation in the Linux kernel
contained a NULL pointer dereference vulnerability in certain situations. A
local attacker could use this to cause a denial of service (system crash).
(CVE-2023-0394)
It was discovered that the Human Interface Device (HID) support driver in
the Linux kernel contained a type confusion vulnerability in some
situations. A local attacker could use this to cause a denial of service
(system crash). (CVE-2023-1073)
It was discovered that a memory leak existed in the SCTP protocol
implementation in the Linux kernel. A local attacker could use this to
cause a denial of service (memory exhaustion). (CVE-2023-1074)
Kyle Zeng discovered that the ATM VC queuing discipline implementation in
the Linux kernel contained a type confusion vulnerability in some
situations. An attacker could use this to cause a denial of service (system
crash). (CVE-2023-23455)
It was discovered that the RNDIS USB driver in the Linux kernel contained
an integer overflow vulnerability. A local attacker with physical access
could plug in a malicious USB device to cause a denial of service (system
crash) or possibly execute arbitrary code. (CVE-2023-23559)
Lianhui Tang discovered that the MPLS implementation in the Linux kernel
did not properly handle certain sysctl allocation failure conditions,
leading to a double-free vulnerability. An attacker could use this to cause
a denial of service or possibly execute arbitrary code. (CVE-2023-26545)
Wei Chen discovered that the DVB USB AZ6027 driver in the Linux kernel
contained a null pointer dereference when handling certain messages from
user space. A local attacker could use this to cause a denial of service
(system crash). (CVE-2023-28328)
Source: USN-6030-1: Linux kernel (Qualcomm Snapdragon) vulnerabilities
Leave a Reply