USN-5018-1: Linux kernel vulnerabilities

USN-5018-1: Linux kernel vulnerabilities

It was discovered that the virtual file system implementation in the Linux
kernel contained an unsigned to signed integer conversion error. A local
attacker could use this to cause a denial of service (system crash) or
execute arbitrary code. (CVE-2021-33909)

Piotr Krysiuk discovered that the eBPF implementation in the Linux kernel
did not properly enforce limits for pointer operations. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2021-33200)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation did
not properly clear received fragments from memory in some situations. A
physically proximate attacker could possibly use this issue to inject
packets or expose sensitive information. (CVE-2020-24586)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
incorrectly handled encrypted fragments. A physically proximate attacker
could possibly use this issue to decrypt fragments. (CVE-2020-24587)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
incorrectly handled EAPOL frames from unauthenticated senders. A physically
proximate attacker could inject malicious packets to cause a denial of
service (system crash). (CVE-2020-26139)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation could
reassemble mixed encrypted and plaintext fragments. A physically proximate
attacker could possibly use this issue to inject packets or exfiltrate
selected fragments. (CVE-2020-26147)

It was discovered that the bluetooth subsystem in the Linux kernel did not
properly perform access control. An authenticated attacker could possibly
use this to expose sensitive information. (CVE-2020-26558, CVE-2021-0129)

Or Cohen and Nadav Markus discovered a use-after-free vulnerability in the
nfc implementation in the Linux kernel. A privileged local attacker could
use this issue to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2021-23134)

Piotr Krysiuk discovered that the eBPF implementation in the Linux kernel
did not properly prevent speculative loads in certain situations. A local
attacker could use this to expose sensitive information (kernel memory).
(CVE-2021-31829)

It was discovered that a race condition in the kernel Bluetooth subsystem
could lead to use-after-free of slab objects. An attacker could use this
issue to possibly execute arbitrary code. (CVE-2021-32399)

It was discovered that a use-after-free existed in the Bluetooth HCI driver
of the Linux kernel. A local attacker could use this to cause a denial of
service (system crash) or possibly execute arbitrary code. (CVE-2021-33034)
Source: USN-5018-1: Linux kernel vulnerabilities

About KENNETH 19688 Articles
지락문화예술공작단

Be the first to comment

Leave a Reply

Your email address will not be published.


*


이 사이트는 스팸을 줄이는 아키스밋을 사용합니다. 댓글이 어떻게 처리되는지 알아보십시오.